SAS4 and SAS5 are locus-specific regulators of silencing in Saccharomyces cerevisiae.

نویسندگان

  • E Y Xu
  • S Kim
  • D H Rivier
چکیده

Sir2p, Sir3p, Sir4p, and the core histones form a repressive chromatin structure that silences transcription in the regions near telomeres and at the HML and HMR cryptic mating-type loci in Saccharomyces cerevisiae. Null alleles of SAS4 and SAS5 suppress silencing defects at HMR; therefore, SAS4 and SAS5 are negative regulators of silencing at HMR. This study revealed that SAS4 and SAS5 contribute to silencing at HML and the telomeres, indicating that SAS4 and SAS5 are positive regulators of silencing at these loci. These paradoxical locus-specific phenotypes are shared with null alleles of SAS2 and are unique among phenotypes of mutations in other known regulators of silencing. This work also determined that these SAS genes play roles that are redundant with SIR1 at HML, yet distinct from SIR1 at HMR. Furthermore, these SAS genes are not redundant with each other in silencing HML. Collectively, these data suggest that SAS2, SAS4, and SAS5 constitute a novel class of regulators of silencing and reveal fundamental differences in the regulation of silencing at HML and HMR. We provide evidence for a model that accounts for the observation that these SAS genes are both positive and negative regulators of silencing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Initiation of Ageing Process by Meiotic and Mitotic Recombination within the Ribosomal DNA Genes in Saccharomyces cerevisiae

In the budding yeast of Saccharomyces cerevisiae the tandem repeated of rDNA genes are located onchromosome XII, which is in the nucleolus. There are different types of proteins in the nucleoluskeleton,silencing proteins have got important role in nucleolus.It is shown that meiotic recombination between nonsister chromatids in the rDNA genes are stronglysuppressed, and s...

متن کامل

Rtt106p is a histone chaperone involved in heterochromatin-mediated silencing.

Epigenetic inheritance of heterochromatin structure is an important cellular process whose mechanism remains elusive. In this article, we describe the identification of nine enhancers of the silencing defect of a Saccharomyces cerevisiae-PCNA mutant by screening a library of approximately 4,700 viable yeast deletion mutants. Of the nine mutants identified, six (hir1, hir3, sas2, sas4, sas5, and...

متن کامل

One-hybrid screens at the Saccharomyces cerevisiae HMR locus identify novel transcriptional silencing factors.

In Saccharomyces cerevisiae, genes located at the telomeres and the HM loci are subject to transcriptional silencing. Here, we report results of screening a Gal4 DNA-binding domain hybrid library for proteins that cause silencing when targeted to a silencer-defective HMR locus.

متن کامل

Spt10 and Spt21 are required for transcriptional silencing in Saccharomyces cerevisiae.

In Saccharomyces cerevisiae, transcriptional silencing occurs at three classes of genomic regions: near the telomeres, at the silent mating type loci, and within the ribosomal DNA (rDNA) repeats. In all three cases, silencing depends upon several factors, including specific types of histone modifications. In this work we have investigated the roles in silencing for Spt10 and Spt21, two proteins...

متن کامل

REP3-mediated silencing in Saccharomyces cerevisiae.

In yeast the Sir proteins and Rap1p are key regulators of transcriptional silencing at telomeres and the silent mating-type loci. Rap1 and Sir4 also possess anchoring activity; the rotation of plasmids bound by Sir4 or Rap1 is constrained in vivo, and Rap1 or Sir4 binding can also correct the segregation bias of plasmids lacking centromeres. To investigate the mechanistic link between DNA ancho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 153 1  شماره 

صفحات  -

تاریخ انتشار 1999